Deep Learning Robot Demo -
ROS and Robotic Software

Makespace, Cambridge UK
22nd February 2016



A

bout Me

Games e
VR
Webisodes / Entertainment
Software development
Startups
2 Euro-Profile -
siliconarrtists In-Depth European IT Profiles \/E I\/I M
Sold v Sold v

\
S

simon@robotlux.com
@eurodemanding



Make: Arduino
Bots and Gadgets

Insect Bot

OREILLY*




Teach Bot

Gordon McComb



| Camera Bot

P



SLAM

« Simultaneous Localization and Mapping

* | ocalization: How does a robot know where it is
in a world of untrustworthy sensors?

* Mapping: How can it make
a map when it doesn't
know where it is?

*Probabilistic

ROBOTICS

SEBASTIAN THRUN
WOLFRAM BURGARD
DIETER FOX




The basis for the EKF-SLAM method is to describe the
vehicle motion in the form

P(xx | Xg—1,ur) <= xi = f(xp—1,ux) + wg, (6)

where f(-) models vehicle kinematics and where w; are
additive, zero mean uncorrelated Gaussian motion distur-
bances with covariance Q;. The observation model is de-

scribed in the form
P(zy | xx, m) <= z(k) = h(x;, m) + vy, (7)

where h(-) describes the geometry of the observation and
where v, are additive, zero mean uncorrelated Gaussian
observation errors with covariance Rj.

Life’s too short.
What can we steal?

With these definitions the standard EKF method [31],
[14] can be applied to compute the mean

EIRET)

P — Pz Pom
k|k PIm P.im bl

_ E[<xk—§k)(xk—§k)7|zo:k]
m — I m — Iy

of the joint posterior distribution P(xy, m | Zg.x, Ug.x, Xo)
from:
Time-update

and covariance

Kijk—1 = FXp—1/k—1, k) (8)
Pookk—1 = VEPrpio1x—1 VT + Qs (9)

where Vf is the Jacobian of f evaluated at the estimate
Xk—1/k—1- There is generally no need to perform a time-
update for stationary landmarks®.

Observation-update

[’;(flil:] - ’;‘i"cll:__ll] + Wi [2(k) — h(Xgjx—1, x-1)] (10)

Py = Prjg—1 — Wkssz (11)

where
S, = VhPHk_thT + R,

W =Py VhTS, !

and where Vh is the Jacobian of h evaluated at Xz, and
my_ ;.



::: ROS

Robot Operating System

* Not just for robots
* Not an operating system

ROS = An open source
framework and a collection of
packages that are useful in
robotics




ROS Packages

Navigation: SLAM, autonomous navigation...

Robot Arm: Kinematics, inverse kinematics...

Hardware Drivers: LIDARS, sound, motors, vision...

Interfaces: OpenCV, Caffe, Speech to text...



The History of ROS

—

Open Source
Robotics Foundation




TurtIeBot

:::ROS

2

open hardware




E
0
v
n
M
e}
o]
0
O
x
c
w
n
n
o]
@




Parrot AR.Drone 2.0 Elite with ROS drivers



Erle Robotics



Driverless Development Vehicle with ROS Interface

Choose either the Lincoln MKZ or Ford Fusion as a development vehicle.

Full control of

throttle
brakes
steering
shifting
turn signals

Read production sensor data such as
—
qyros —
accelerometers

whesspecs DATASPEEDn..

There are no visual indications that the production vehicle has been modified. All electronics and wiring are hidden.



ROS Architecture: Nodes and Topics

Node — independent software process that publishes and subscribes
to Topics
Topic — A stream of structured data messages

T T

std_msgs/Header header
float32 angle_min
float32 angle_max
float32 angle_increment

L I DAR > float32 time_increment
Laser Range float32 scan_time
Finder float32 range_min
float32 range_max
float32[] ranges

\float32[] intensities /

sensor_msgs/LaserScan

Object
Recognition

T

Safety

Override

Range line



4 N\ a0 4 )
“washin “hello,
— : g greeter » washing [
machine .
machine
- / - /
objects _in_view text to_speak

import rospy

from std_msgs.msg import String

Pub = @

if _ _name__ == '_ _main__"':
rospy.init_node('greeter', anonymous=True)
global Pub

Pub = rospy.Publisher('/text_to_speak', String, queue_size=10)
rospy.Subscriber("/objects_in_view", String, message_received)
rospy.spin()

def message_received(string_message):
global Pub
Pub.publish("Hello, " + string_message)

greeter.py



amcl

’ ‘ sensor transforms

ROS Navigation Stack

n/tfu

"move_base_simple/goal"
geometry_msgs/PoseStamped
|

odometry source

tf/tfMessage

llodomu

Navigation Stack Setup

"/map" ‘

move_base l

Y

global_planner j<—— global_costmap

-

nav_msgs/GetMap ‘ map_server

sensor topics ‘

internal

nav_msgs/Path recovery_behaviors

Y \

nav_msgs/Odometry

> local_planner <—— |ocal_costmap

"cmd_vel" [geometry_msgs/Twist

Y

base controller

sensor_msgs/LaserScan || SEnsor sources

sensor_msgs/PointCloud

provided node
optional provided node
platform specific node

Enough to do SLAM and autonomous navigation



Where in the stack do you want to experiment?

ROS -

Behaviours

Faculties

Electronics

Mechanics

Play with the dog

SLAM, navigation, object recognition...

Arduino code / C++

Microcontrollers, IMUs, sensors...

Grippers, wheels, legs, chassis...



The Deep Learning Robot

3D Depth Camera

Google TensorFlow

Robot Operating System (ROS)
Torch

Theano

Caffe

CUDA + cuDNN

Tegra K1

Wifi + Bluetooth

Mobile Base www.autonomous.ai
$1000 = GBP 700




Kobuki Mobile Base

« 2 wheel, differential
drive

 Wheel encoders
* 3 bump sensors

« 1 cliff sensor
 Wheeldrop sensor
« (Gyroscope

* |R-based docking

« USB communication
with robot
motherboard




nVidia Jetson TK1

Robot motherboard:
- ARM CPU

« 2Gb RAM
 16Gb Flash

 nVidia GPU with
192 CUDA cores

o Wifi & Bluetooth

DEV KIT
715-1002

Principal value add is
CUDA acceleration
of deep learning
tools




Asus Xtion Pro Live

« Camera with RGBD
(RGB + depth output)

 Uses infrared to
rangefind

* Microphone

« USB communication
with Robot motherboard

 Primesense, succesor
to Kinect

 |ntel RealSense3dD is
like succesor to this



Demo



Great, free, introductory course on the
maths of SLAM, autonomous navigation

Artificial Intelligence for Robotics
UDACITY

https://www.udacity.com/course/artificial-intelligence-for-robotics--cs373




Deep Learning

Neural Networks

Machine Learning

If X has features a, b, ¢, d... thenwhatisY ?

If X is age 42 then what is their net worth ?

If X is a house with 3 BDR, centre of Cambridge and in lousy condition
then what is the price ?

If X is an email with words “viagra”, “cheap”... then is it spam ?

If X is an image with pixels (1, 2, 3...10,000) then is it showing my
grandmother?



Neural Networks

Input Layer

O _

Middle Layer

“Grandmother”

Y

Back Propagation <



Neural Networks

Retro and futuristic

They work now (but didn’t in the 80s) because of
— Fast CPUs

— Fast GPUs (all thanks to gamers)
— Large datasets

Deep Learning
CNN: Convolutional Neural Networks
RNN: Recurrent Neural Networks

Is back propagation the fundamental computational
building block of the human brain?



Caffe

Tool for designing, training and testing neural networks, especially
related to vision

CUDA accelerated
Widely used in research

Pre-installed on the robot (along with similar Google TensorFlow,
Theano etc.)

[ P
] -0
] -0
] o
| 4‘7 Lo sunset [ p_
-0
B, — - A |o° o
| o No .
] o No cog
1 ] ) °
— o °
ol 7\ > ..
" o ]
convolution + max pooling vec | o Y
nonlinearity [ o

l J

convolution + pooling layers fully connected layers  Nx binary classification




Demo



Survey



What next?



Richard Branson (Ieft) tries out Simon Birrell’s award-winning game.

Norfolk bovy’s video

game proves a winner

Norfolk combputer whiz7 / put to good use ... buying a disc







10 print “piss off”
20 goto 10



isting 1. One-dimensional life

10

882888

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

ed

250
260
270
280
290
300
310

REM 1D Life

REM by Susan Stepney

REM for B/B+/M/C/E/A

REM (c) Acorn User November 1988
s

ON ERROR MODE 7:PROCerror
MODE 7

PROCsetup

MODE mode’%

VDU 23,1,03030303
PROCscreen

WAIT=GET

END

]

DEF PROCsetup

PROCparams

mode%=2

M4A=160%2"(2- (mode’ MOD 3))
line%=256

xres4=1280/M%
yres%Z=1024/1line%

DIM ci1%Z M%L

DIM c2%Z M%Z

IF rnd PROCinitrnd ELSE PROCinitse

ENDPROC

]

DEF PROCscreen

LOCAL A%,B%, X%, Y%

Y%4=1023

FOR J%=0 TO line%-1

IF J% MOD 2=0 THEN A%Z=ci%:Bi=c2% E

LSE A%=c2Z:Bi%=cl%

320
330
340
350
360
370
380
390
400
%)
410

FOR I%=0 TO N%-1

GCOL 0, ? (A%+I%)

PLOT 69, I%#xres%, Y%

GCOL 0, ? (A%+M%-1-I%)

PLOT 69, (M%i-1-1%) ¥xres%,Y%
index%=? (A%+ (I%-N%+M%Z) MOD M%)
index2%=? (A%+ (M4-1-1%-N%) MOD M%)
FOR KZ=-N%+1 TO N%
index%=index%+? (A%+ (1%+K%+M%) MOD M

index2%=index2%+? (A%+ (MA-1-I%+K%)

MOD M%)

420
430
440
450
460
470
480
490
500
510
520
530
540

NEXT
?(B%+1%)=ruleZ(index%)

2 (BA+HM/~1+1%) =ruleZ(index2%)
NEXT I%

XZ%=N/*xres’i

FOR I%=N% TO M4—-1-N%
GCOL O, ?(A%L+I%)

PLOT 69,X%,Y%

index%=7? (A%+I1%-N%L)

FOR K%=-N%+1 TO N%
index%=index%+? (A%+I%+K%)
NEXT
?(B%+1%)=rule%(index)

S50 Xi=X%i+xresi

560 NEXT I%

570 Yi=Yi-yresi

580 NEXT J%Z

590 ENDPROC

600

610 DEF PROCerror

620 VDU 23,1,1;030;0;

630 REPORT:PRINT " on line ";ERL

640 END

4650 ENDPROC

660 3

&70 DEF PROCparams

680 INPUT "neighbourhood N = "N%Z

690 INPUT "states 81 "S%

700 dimZ%Z=(S%—1) % (2#N%+1) +1

710 INPUT "rule R 3 “"rul
es$

720 IF LEN(rules$)<dim% rule$=STRINGS (d
im%Z-LEN(rules), "0")+rules$

730 DIM rule%(dim%)

740 FOR 1%=0 TO dim%-1

750 rule’Z(I%)=EVAL(MIDS$ (rule$,dim%-1%,
1))

760 IF rule%Z(I%)>=8% VDU7:PRINT"invali
d state “j;ruleX(I%Z);" in rule "jrules$:EN
D

770 NEXT I%Z
780 PRINT "seed pattern"'" RETURN for
random," ‘" or string of numbers in ran

ge 0-"38%-13" : ":INPUT""seed$

790 IF seed$="" THEN rnd=TRUE ELSE rnd
= FALSE

800 ENDPROC

810

820 DEF PROCinitrnd

830 FOR I%=0 TO M%

B840 ?(c1%+I%)=RND(S%)-1

850 NEXT

860 ENDPROC

870 :

880 DEF PROCinitseed

890 FOR I%=0 TO M%Z

900 ?(ci1Z+I1%)=0

910 NEXT

920 len’%=LEN(seed$)

930 12%=len%/2

940 starti=ML/2-12%

950 end%=ML/2+12%

960 IF lenZ MOD 2=0 THEN end%=endZ%—1

970 FOR I%=startZ TO end%Z

980 ?(ci%+I1%)=EVAL(MIDS (seed$, I%Z-start

%+1,1))

990 IF ?(c1%+I%)>=8% VDU7:PRINT"invali

d state ";?(cl%+I%)3" in seed pattern ";
seed$: END

1000 NEXT
1010 ENDPROC




MODELS A

Steve Willis

Maochine Code
Made Easy

PROGRAMMING
BY NUMBERS -
A GUIDE TO
6502 MACHINE
CODE

Right, so you have now learnt
BASIC but your friends keep
mentioning a thing called
MACHINE CODE, do they mean
the Serial No. of the computer?
Well, over the next few articles I
hope to show you what
MACHINE CODE is all about
with particular reference to the
BBC micro.

During this series | will make
reference to the BBC USER
Guide (BUG) where the informa-
tion given is relevant and can
save me being repetitive. Another
book that you may find useful, if
you seriously intend using
machine code programs (mad
fools!) is PROGRAMMING THE
6502 by ZAKS (published by
SYBEX & being Volume 1 of 4).

Okay, first we had better get
an idea of how a microprocessor
works in relation to it's circuitry.
The diagram, Figure 1, shows a
block diagram of a micro-
processor and a minimal circuit
with which it operates. We will
build upon this diagram in future
articles. Figure 2 shows the main
components of the microproces-
sor itself.

6502
PROCESSOR
(HEXADECIMAL)

The 6502 processor is an 8-bit
processor, meaning that data is
transferred around the system by
8 individual parallel lines
simultaneously. Each of these
lines is digitally switched to either
+5volts or 0 volts (i.e. ‘ON’ or
‘OFF’); this is the basis of a
BINARY system. As there are
eight lines, each of which may be
‘ON’ or ‘OFF", it can be calculated
that there are 256 different com-
binations for one BYTE (the term
given to one transfer of the 8
parellel BITS.

The usual way of writing
down an 8-bit number is to use ‘1’
for a line that is ‘ON’ and ‘0’ for
one that is off. The 8-bit number

We begin our series on Machine Code
with an invaluable introducation to
6502 microprocessor circuitry.

is then given in the form
11001010 etc., where the first
digit is known as ‘D7’ and the last
as ‘DO’ (with D6, D5 . . in the
middle). However this BINARY
representation is not very easy to
decode into a decimal number —
the above being the binary
equivalent of 202. The conver-
sion from binary to decimal is
achieved as follows: —

BINARY — 11001010

d X 128 = 128
1 X 64 = 64
0 X 32 = 0
0 X 16 = 0
1 b3 8 = 8
0 x 4 = 0
1 X 2 = 2
0 X 1 = 0

DECIMAL = 202

As a matter of interest, as the 8
bits are designated D7-DO the
conversion is X7 % 2 7) + (X6
* 2 6) + ... where X is the
binary bit value (0 or 1) and the
power of 2 is the D value.

For most ordinary mortals
the conversion from 8-bit binary
to decimal proves a headache to
say the least — unless you have
hours to waste. Thus the hexa-
decimal system is used, this being
not only easier to use but also, we

will see later, more logical for
8-bit use. In this system the 8-bit
binary number is split into two 4-
bit groups (D7-D4 & D3-D0) and
each is then given a hexadecimal
code.

Given a 4-bit group (e.g.
‘1010’) there are 16 possible
combinations from ‘0000’ to
‘1111". Now in decimal we would
require two digits to represent
any of these combinations above
‘1001’ (9) but we wish to have
only one digit to represent our
4-bit group. Hexadecimal
achieves this by representing
10-15 as A-F, so the equivalent
decimal/hexadecimal groups are
as shown on page 71 of BUG.

Just as a check I give a few
examples of conversions
below: —

The conversion to decimal from
hexadecimal is much easier than
from binary — 1st Hex * 16 +

2nd Hex = Decimal.

THE DATA BUS

Now we have looked at an 8-bit
number let us now look at the
main highway from the micro-
processor which gives it the name
‘8-bit processor’ — the DATA
bus. This ‘highway’ is the channel
by which the microprocessor col-
lects and distributes data to all the
‘data responsive’ devices in the
computer. some of these devices
have permanent values stored in
them which can only be read and
not replaced, in Figure 1 the
ROM devices are of this type.
Others can both be read and writ-
ten to — in our minimal system
these are the RAM devices.

The name ROM stands for
‘READ ONLY MEMORY’ and
these devices generally hold the
operating system programs and
language programs — yes, they
are programs. RAM stands for
‘RANDOM ACCESS MEMORY’
and these devices are available
for storing temporary informa-
tion. This temporary information
may be one of your programs or
data required by the operating
system or language programs.

However, it's all very well
having data flying up and down
the data bus but how does the
processor manage to get or store
data at the right device. Well the
whole system can be equated to a
single line model railway, where
adata BYTE train can only run in
one direction at a time and only
one train is allowed on the track
at any time. The train is guided to
the correct device by points and
allowed out by signals, thus a
predetermined route can be set
up at the start of the run, allowing
data to leave one device on the
system and travel to another.

So, what sets the points and
signals?

BINARY HEXADECIMAL DECIMAL
0001 0000 10 16
0101 0111 57 87
0110 1000 68 104
0010 1010 2A 42
0100 1011 4B 75
1000 1100 8C 140
1001 1101 9D 157
1010 1110 AE 174
0011 1111 3F 63

94

A&B COMPUTING SEPTEMBER/OCTOBER 1983




Machine Code
Macle Easy

‘We begin our series.
an invaluable introducation
502 microprocessor circuitry.

10 print “piss off”
20 goto 10







Set Wheel .

Obstacle In Front

Ll forverd )i G

Hi

el forwerd ) fast

Dash

Beckwerd €3 (0

Uh ch!
All Lights

Tum Left [£3)

Obstacle In Fromt







map_metadata

robot_state_publisher.

map_server

Joint_states

1f_static A

map

move_base »

move_base

diagnostics

Forward Vel. 0.00 Angular Vel. 0.00
Key controis: ZX KM

move_base_simple
goal

odom



Thanks

simon@eurodemand.com
www.artificialhumancompanions.com

Y @eurodemanding



